Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity.
نویسندگان
چکیده
PURPOSE Iron accumulation with age in the retinal pigment epithelium (RPE) may be one important source of oxidative stress that contributes to age-related macular degeneration (AMD). Young and old rodent RPE/choroid were compared to assess iron homeostasis during normal aging and the effects of increased iron on the functions of retinal pigment epithelial cells. METHODS The iron level, mRNA expression, and protein level of iron-regulatory molecules in RPE/choroid were quantitatively compared between young and old animals. To test the effects of increased intracellular iron on the functions of retinal pigment epithelial cells, in vitro ARPE-19 cells were treated with high levels of iron and assessed for phagocytosis activity and lysosomal activity. RESULTS Iron level was significantly increased in the aged RPE/choroid. Ferritin and ceruloplasmin mRNAs were significantly increased in the aged RPE/choroid, whereas transferrin, transferrin receptor, and ferroportin mRNAs did not change with age. At the protein level, decreased transferrin and transferrin receptor, increased ferritin and ceruloplasmin, and unchanged ferroportin were observed in the aged RPE/choroid. Exposure of ARPE-19 cells to increased iron markedly decreased phagocytosis activity, interrupted cathepsin D processing, and reduced cathepsin D activity in retinal pigment epithelial cells. CONCLUSIONS The RPE/choroid of aged animals demonstrates iron accumulation and associated alterations in iron homeostasis. Iron accumulation with age may impair the phagocytosis and lysosomal functions of retinal pigment epithelial cells in the aged RPE/choroid. Therefore, age-related changes of iron homeostasis in the RPE could increase the susceptibility of the tissue to genetic mutations associated with AMD.
منابع مشابه
Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملLysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/βA3/A1-crystallin via V-ATPase-MTORC1 signaling
In phagocytic cells, including the retinal pigment epithelium (RPE), acidic compartments of the endolysosomal system are regulators of both phagocytosis and autophagy, thereby helping to maintain cellular homeostasis. The acidification of the endolysosomal system is modulated by a proton pump, the V-ATPase, but the mechanisms that direct the activity of the V-ATPase remain elusive. We found tha...
متن کاملRetinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.
PURPOSE To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). ...
متن کاملA new, albino-beige mouse: giant granules in retinal pigment epithelium.
Albino-beige mice were produced in order to combine two experimentally useful characteristics, albinism and lysosomal dysfunction, in the same animal. The retinal pigment epithelium of albino-beige mice formed giant intracellular granules. Exposure of albino-beige mice to white light of 150 foot-candles for 3 to 10 hr induced marked phagocytosis of rod outer segment fragments by the retinal pig...
متن کاملLoss of Synchronized Retinal Phagocytosis and Age-related Blindness in Mice Lacking αvβ5 Integrin
Daily phagocytosis by the retinal pigment epithelium (RPE) of spent photoreceptor outer segment fragments is critical for vision. In the retina, early morning circadian photoreceptor rod shedding precedes synchronized uptake of shed photoreceptor particles by RPE cells. In vitro, RPE cells use the integrin receptor alphavbeta5 for particle binding. Here, we tested RPE phagocytosis and retinal f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 50 4 شماره
صفحات -
تاریخ انتشار 2009